Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. Senthil Kumar,^a K. Chinnakali,^a‡ N. Ramesh,^b A. K. Mohanakrishnan^b and Hoong-Kun Fun^c*

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

‡ Additional correspondence author, email: kali@annauniv.edu.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.033 wR factor = 0.088 Data-to-parameter ratio = 33.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Ethyl 2-{[*N*-(2-iodophenyl)phenylsulfonamido]methyl}-1-phenylsulfonyl-1*H*-indole-3-carboxylate

In the title compound, $C_{31}H_{26}IN_2O_6S_2$, molecules are linked into a sheet parallel to the *bc* plane by $C-H\cdots O$ hydrogen bonds and $C-H\cdots \pi$ interactions. The sheets are interlinked *via* $C-H\cdots O$ hydrogen bonds. Received 15 November 2006 Accepted 18 November 2006

Comment

N-(Phenylsulfonyl)indoles exhibit a high affinity towards the 5-HT6 receptor (Zhou *et al.*, 2005). Certain phenylsulfonylindole compounds inhibit the HIV-1 RT enzyme *in vitro* and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams *et al.*, 1993). We report here the structure of the title compound, (I).

The geometry of the phenylsulfonylindole system agrees with those reported for similar structures (Beddoes *et al.*, 1986; Senthil Kumar, Chinnakali, Balamurugan *et al.*, 2006*a*,*b*; Senthil Kumar, Chinnakali, Ramesh *et al.*, 2006*a*,*b*,*c*). Bond lengths and angles involving the S atom of the two phenyl-sufonyl groups present in the molecule agree with each other; the O-S-O, N-S-C and N-S-O angles deviate significantly from the ideal tetrahedral value (Table 1).

The indole ring system (N1/C1–C8) is planar to within 0.013 (1) Å. Atoms O3, C15, O4 and C16 of the ethylcarboxylate substituent are coplanar, with an r.m.s. deviation of 0.009 Å. The C9–C14 and O3/C15/O4/C16 planes form dihedral angles of 78.99 (5) and 12.86 (9)°, respectively, with the indole ring system. The dihedral angle between the planes of the C19–C24 and C25–C30 benzene rings is 31.79 (6)°. The torsion angles describing the conformation of the group attached at C1 are given in Table 1.

The intramolecular C-H···O interactions (Table 2) involving the sulfonyl O1 and O2 atoms, and the carboxylate O3 and O4 atoms, generate rings of graph-set motif S(6)

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 80% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

A view of a hydrogen-bonded sheet in (I). Dashed and dotted lines indicate $C-H\cdots O$ and $C-H\cdots \pi$ interactions, respectively. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

(Bernstein et al., 1995) (Fig. 1). Glide-related molecules are linked through C11-H11···O1ⁱ, C11-H11···O6ⁱ and C18-H18B···O5ⁱ hydrogen bonds, forming a chain along the *c* axis. Adjacent chains are interconnected *via* C–H··· π interactions involving the C25–C30 phenyl ring (centroid Cg1), the C3–C8 benzene ring (centroid Cg2) and the C9-C14 phenyl ring (centroid Cg3), leading to the formation of a sheet parallel to the bc plane (Fig. 2). Molecules in adjacent sheets are linked through C13-H13···O3ⁱⁱ hydrogen bonds along the *a* axis. The symmetry codes are given in Table 2.

Experimental

Ethyl-1-phenylsulfonyl-2-methylindole-3-carboxylate (1.18 mmol) was added to a stirred suspension of 2-iodobenzenesulfonamide (1.11 mmol), potassium carbonate (2.4 mmol) and dimethylacetamide (10 ml). After 3 h, the reaction mixture was poured into ice-water; the precipitated solid was filtered off and dried with CaCl₂. It was recrystallized from ethyl acetate.

Crystal data

 $C_{30}H_{25}IN_2O_6S_2$ Z = 4 $M_r = 700.56$ $D_x = 1.640 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ a = 10.9098 (2) Å $\mu = 1.32 \text{ mm}^{-1}$ b = 22.7150 (4) Å T = 100.0 (1) K c = 11.8579 (2) Å Block, colourless $\beta = 105.011 (1)^{\circ}$ $0.58 \times 0.53 \times 0.29 \text{ mm}$ V = 2838.30 (9) Å³

Data collection

Bruker SMART APEX2 CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.544, T_{\max} = 0.699$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0359P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.088$ S = 1.06 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 2.87 \text{ e} \text{ Å}^{-3}$ 12373 reflections $\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$ 371 parameters H-atom parameters constrained

Table 1 Selected geometric parameters (Å, °).

1-C24	2.0903 (16)	S2-N2	1.6587 (13)
S1-O1	1.4255 (13)	S2-C25	1.7648 (15)
S1-O2	1.4296 (13)	N1-C1	1.4118 (19)
S1-N1	1.6915 (13)	N1-C8	1.4198 (19)
S1-C9	1.7576 (16)	N2-C19	1.4420 (19)
62-06	1.4291 (13)	N2-C18	1.4907 (18)
S2-O5	1.4352 (12)		
01-81-02	120.41 (8)	O5-S2-N2	105.65 (7)
D1-S1-N1	106.90 (7)	O6-S2-C25	107.03 (7)
D2-S1-N1	106.42 (7)	O5-S2-C25	108.07 (8)
D1-S1-C9	108.93 (8)	N2-S2-C25	107.82 (7)
D2-S1-C9	109.13 (8)	C19-N2-C18	117.32 (12)
N1-S1-C9	103.77 (7)	C19-N2-S2	116.28 (10)
D6-S2-O5	120.70 (8)	C18-N2-S2	115.16 (9)
D6 - S2 - N2	107.00 (7)		
C25-S2-N2-C18	-67.89 (12)	S2-N2-C18-C1	-164.98 (10)
C19-N2-C18-C1	52.53 (17)	N1-C1-C18-N2	66.85 (17)

41126 measured reflections

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 35.0^{\circ}$

+ 3.3196*P*] where $P = (F_0^2 + 2F_c^2)/3$

12373 independent reflections

10729 reflections with $I > 2\sigma(I)$

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C4-H4···O4	0.95	2.41	2.932 (2)	114
$C7-H7\cdots O2$	0.95	2.35	2.958 (2)	121
$C11-H11\cdots O1^{i}$	0.95	2.49	3.150 (2)	127
$C11-H11\cdots O6^{i}$	0.95	2.38	3.159 (2)	139
C13-H13···O3 ⁱⁱ	0.95	2.33	3.248 (2)	162
C18-H18A···O3	0.99	2.25	2.981 (2)	130
C18−H18B···O1	0.99	2.31	2.852 (2)	113
C18-H18B···O6	0.99	2.48	2.9184 (18)	106
$C18-H18B\cdots O5^{i}$	0.99	2.55	3.1223 (18)	116
$C5-H5\cdots Cg1^{iii}$	0.95	2.63	3.4645 (17)	148
$C16-H16A\cdots Cg2^{iv}$	0.99	2.92	3.638 (2)	131
$C16-H16B\cdots Cg3^{iv}$	0.99	2.83	3.655 (2)	141
$C22-H22\cdots Cg2^{v}$	0.95	2.81	3.635 (2)	146

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y + 1, -z + 2; (v) -x + 1, -y + 1, -z + 1.

The H atoms were positioned geometrically (C-H = 0.95–0.99 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = xU_{eq}$ (carrier atom), where x = 1.5 for methyl and 1.2 for other H atoms. The highest residual electron density peak is located 0.67 Å from atom C21 and the deepest hole is located 0.60 Å from atom I1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No. 304/PFIZIK/635028.

References

- Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Senthil Kumar, G., Chinnakali, K., Balamurugan, R., Mohanakrishnan, A. K. & Fun, H.-K. (2006a). Acta Cryst. E62, 04972–04974.
- Senthil Kumar, G., Chinnakali, K., Balamurugan, R., Mohanakrishnan, A. K. & Fun, H.-K. (2006b). Acta Cryst. E62, 05092–05094.
- Senthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006a). Acta Cryst. E62, o5152–o5154.
- Senthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006b). Acta Cryst. E62, o5155–o5157.
- Senthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006c). Acta Cryst. E62, 04936–04938.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291–1294.
- Zhou, P., Yan, Y., Bernotas, R., Harrison, B. L., Huryn, D., Robichaud, A. J., Zhang, G. M., Smith, D. L. & Schechter, L. E. (2005). *Bioorg. Med. Chem. Lett.* 15, 1393–1396.